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ABSTRACT: The information in modern or fossil foraminifera assemblages is the relative abundance or percentages of species, i.e., they 
can be considered as compositional data. In this study we deal with CoDa and regression-based methods as tools to estimate past climatic 
conditions. We tested standard and robust Partial Least Squares and Principal Component Regression, applied to the log-ratio coordinates 
of percentage data of Atlantic Ocean and Mediterranean Sea planktonic foraminiferal assemblages. Due to the presence of groups, it was 
preferred to model separately high latitude and mid to low latitude assemblages. This approach implies the application of cluster analysis, 
MANOVA and discriminant analysis to the logratio transformed fossil assemblage’s compositions. The methods were then applied on ma-
rine core assemblages to reconstruct past sea surface temperatures. The obtained results were compared with those formerly obtained by 
means of compositional modern analogue technique and with the information arising from other paleoclimatic proxies.  
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1. INTRODUCTION 
 
In the last decades, several methods were pro-

posed to obtain quantitative estimates of past environ-
mental parameters from counts of fossils assemblages 
(Imbrie & Kipp, 1971, Hutson, 1979; ter Braak & Jug-
gins, 1993; Pflaumann et al., 1996; Waelbroeck et al., 
1998; Malmgren et al., 2001; among others). Most 
methods are applied to percentage data obtained from 
counting of specimens. The peculiar properties of rela-
tive abundance data represent however a key issue to 
be taken into account when developing transfer func-
tions based of fossil assemblages. Percentage data 
belong to compositional data (CoDa) (Aitchison, 1986): 
that is, the information contained in a vector of counts x 
is the same as in k·x, for any real scalar k>0, property 
known as scale invariance which indicates that a com-
position is an equivalence class (Barceló-Vidal & Martín-
Fernández, 2016). This type of data is very common in 
Earth Sciences when the constituents and compounds 
are described in terms their concentration (e.g., Bucci-
anti et al., 2006). In a paper recently published (Di Do-
nato et al., 2018) we revised the modern analogues 
technique (MAT) (Hutson, 1979; Pflaumann et al., 1996; 
Waelbroeck et al., 1998) according to the CoDa meth-
odology (Aitchison, 1986). In this study, following the 
same approach, we deal with regression-based meth-
ods, such as Principal Component Regression (PCR) 
and Partial Least Squares Regression (PLSR). In order 
to apply PLSR to CoDa, Hinkle & Rayens (1995) pro-
posed logcontrast partial least squares (LCPLS). CoDa 

refers to vectors of positive components showing the 
relative weight of a set of parts in a total. Nowadays, 
there is a general agreement that applying the standard 
statistical methods to CoDa may yield misleading results 
(Pawlowsky-Glahn et al., 2015). The log-ratio methodol-
ogy proposed by Aitchison (1986) and the following de-
velopments (i.e. Martín-Fernández & Thió-Henestrosa, 
2016a; Martín-Fernández & Thió-Henestrosa, 2016b) 
represent a powerful set of methods and techniques to 
apply to CoDa. The approach adopted in this paper fol-
lows the principle of working on coordinates (Mateu-
Figueras et al., 2011), that is, the standard statistical 
analysis is conveniently performed after choosing log-
ratio coordinates. In particular, we considered to express 
each D-vector x = (x1, ..., xD) of percentages of species 
as: 1) a D-dimensional vector z=(z1, ..., zD) of centred 
log-ratio coordinates (z =clr(x)) (Aitchison, 1986) and 2) 
a (D−1)-dimensional real vector y=(y1, ..., yD-1) of isomet-
ric log-ratio coordinates (y =ilr(x)) (Egozcue et al., 2003) 
(see Appendix 1 in Di Donato et al. (2018) for definitions 
and details). To develop our approach, the following 
points were considered: 1) pre-processing techniques; 
2) elaboration of regression-based transfer functions 3) 
evaluation of the results 4) application to fossil assem-
blages. As case studies, we considered applications 
based on the estimation of past sea surface tempera-
tures (SST) from planktonic foraminifera assemblages. 
However, the described methods may be applied to 
different palaeoecological contexts. The analyses were 
carried out with MATLAB codes except for raw-data 
analysis which was computed with R package rioja 
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(Juggins, 2017). MATLAB routines expressly written to 
perform CoDa-regression and CoDaMAT are provided 
in the supplementary materials. The Robust Partial 
Least Squares Regression requires the Rsimpls.m 
matlab code included in the LIBRA package (Verboven 
& Hubert, 2004), available at https://github.com/
duncombe/matlab/blob/master/LIBRA/rsimpls.m.  
A workflow of the analysis is shown in Table 1.  
 
2. APPROACHING THE ANALYSIS  
 
2.1. The dataset 

The dataset on which our applications are comput-
ed is represented by a database consisting of 1252 
Atlantic and Mediterranean planktonic foraminifera core-
top assemblages, which represent the regressor varia-
bles, determined on the >150 μm size fraction (Prell et 
al., 1999; Hayes et al., 2004; Kucera et al., 2004) (Fig. 
1). In this paper we considered SST as response varia-
bles. The oceanographical data, consisting of mean 
annual and seasonal SST refer to Antonov et al. (2010) 
and Locarnini et al. (2010). Seasonal temperatures are 
3 months averages, i.e. January–March for northern 
(southern) winter (summer) and July–September for 
northern (southern) summer (winter). The SST values at 
coretop locations were computed by means of Ocean 
Data View 4.7.10 (Schlitzer, 2018). Following Kucera et 
al. (2005), oceanographical data are related to a depth 

 

Tab. 1 - Workflow of the analysis 

Fig. 1 - Location of modern planktonic foraminifera coretop 
samples adopted for application of CoDa-MAT. Drawn with 
Ocean Data View software (Schlitzer, 2018).  
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of 10 m.  
 
2.2 Data pre-processing: subcomposition, amalgam-
ation and zero replacement 

The data pre-processing which is needed to ac-
complish the analysis is fully explained in Di Donato et 
al. (2018) and will not be detailed here. In short, our 
approach requires data to be strictly positive (Aitchison, 
1986). To reduce the number of zero values to be re-
placed, rarer species, which carry inevitably low signal 
to noise ratios (Kucera et al., 2005) can be excluded 
from the assemblages, by considering a subcomposition 
(Aitchison, 1986) of the original assemblages. Moreo-
ver, an amalgamation of taxa characterised by similar 
ecological requirements can be also considered 
(Aitchison, 1986). To manage the zeros occurring in the 
data, we adopted a mixed Bayesian-multiplicative esti-
mation approach, which is recommended when the 
compositional data arise from counts (Martín-Fernández 
et al., 2003; Martín-Fernández et al., 2015) (see also 
Appendix 1 in Di Donato et al., 2018).  

After the zero replacement, the clr- and ilr-
coordinates’ vectors for the fossil and modern data are 
obtained. Thus, fossil assemblages are represented by 
its logratio-coordinates, whereas the modern database 
is consisting of logratio-coordinates together with the 
environmental parameters measured at each location. 
The ilr coordinates can be computed by means of bal-
ances (Egozcue et al., 2005). These are logcontrasts 
obtained by means of a Sequential Binary Partition 
(SBP) matrix. For each order of the partition, it is possi-
ble to define the balance between the two sub-groups 
formed at that level: if i1, i2,…, ir are the r parts of the sub-
group coded by +1, and j1, j2,…, js the s parts of the sub-
group (coded by -1), a balance is defined as: 

From a D part composition, D-1 balances (ilr-
coordinates) can be obtained. 

In our case, for the sake of simplicity, we adopted 
a matrix of the type: 

 

 
 

As explained in Di Donato et al. (2018), two da-
tasets were generated, consisting of respectively 19 and 
15 taxonomical groups (see appendix 2 in Di Donato et 
al., 2018). 

 

order x1 x2 x3   xD-1 xD 

1 1 -1 -1 …. -1 -1 

2 0 1 -1 …. -1 -1 

3 0 0 1 …. -1 -1 

…. …. …. …. …. …. …
. 

D-1 0 0 0 …. 1 -1 

2.3. Multiple regression methods 
The PLSR and PCR methods applied to perform 

the palaeo-estimates are models recommended to pre-
dict a response variable when there are a large number 
of predictor variables highly correlated (ter Braak & Jug-
gins; 1993 Juggins, 2017). Both methods construct new 
orthogonal, hence not correlated, predictor variables as 
linear combinations of the original predictor variables. 
However, while PCR creates components to maximise 
the observed variability in the predictor variables, with-
out considering the response variable at all, PLSR cre-
ates components by maximising the covariance between 
predictors and response variables. For PLSR we adopt-
ed the SIMPLS algorithm (de Jong, 1993). We also test-
ed a robust PCR (RPCR) and robust PLS (RSIMPLS) 
(Hubert & Branden, 2003). In order to comply with the 
CoDa approach, both analyses should be computed on 
ilr coordinates. It can be noted, however, that clr- and ilr- 
coordinates, provide the same results for both PCR and 
PLSR (Filzmoser et al., 2018). Hereafter we denoted 
with CoDa-PLSR and CoDa-PCR the analysis per-
formed on log-ratio coordinates. The main advantage of 
clr-coordinates is that they are logcontrasts more easily 
interpretable. However, ilr-coordinates are advanta-
geous when the analysis requires full rank data, such as 
discriminant analysis.  

In order to evaluate the number of PLS compo-
nents to be taken into account, we considered, as usual, 
the percent of variance explained in the response varia-
ble and the mean-squared errors (see section 2.4) as a 
function of the number of components. For CoDa-PCR 
we considered the percent of total variance of regressor 
variables. 

The Relative variation biplot (RVB) of the plankton-
ic foraminifera assemblages included in the modern 
dataset is shown in Figure 2. A RVB consists of a stand-

Fig. 2 - Relative variation biplot (RVB) of planktonic foraminifer-
al assemblages included in the modern dataset. Row points are 
grouped according to their latitude.  



   

 

ard principal components biplot applied to the clr coordi-
nates of the assemblages. The first two axes accounts 
for about 63% of total variability (a total of 71% is 
reached if a third axis is added). The location of the data 
points in the RVB highlights the well-known broad latitu-
dinal distribution of assemblages. It can be noted that 
the origin of the RVB corresponds to a low-density area. 
Moreover, the distribution of data points in the RVB 
seems to indicate the existence of two groups within the 
dataset, the first of which is represented by high latitude 
assemblages. Principal Components Analysis (PCA) is 
properly defined for homogeneous, normally-distributed 
data from a single population (Tolosana-Delgado & Mc 
Kinley, 2016). Thus, we considered evaluating, apart 
from a regression model built with the whole dataset, 
two separate models for high latitude and low to middle 
latitude assemblages. Separate regional models were 
considered, among others, in Prell (1995), Ortiz & Miz 
(1997) and Kucera et al. (2005). For our purposes, a 
cluster analysis (Ward’s method on ilr-coordinates) was 
applied to the dataset, discarding then some observa-
tions that did not belong to either of the two main de-
fined groups. A MANOVA test indicates that the two 
groups are significantly distinct (with p~0). Since at high 
latitude only few planktonic foraminifera species occur, 
the regression models for the high latitude group was 
built by considering a sub-composition of the dataset 
made of only 5 species. The application of this two-step 
procedure to fossil assemblages requires to first perform 
a linear discriminant analysis (LDA) in order to classify 
them into one of the 2 defined groups. Apart from theo-
retical considerations, the application of LDA to percent-
age data faces problems related to the singularity of the 
within groups variance/covariance matrix. This problem 
also occurs with clr-coordinates, while ilr-coordinates 
are not affected by this problem. The LDA misclassifica-
tion rate provided a leave-one-out cross validation meth-
od for the two groups defined in the modern dataset is 
0.0085. 
  
2.4. Evaluation of the quality of the estimates 

The evaluation of the quality of the estimated re-
sults provided by CoDa-PCR and CoDa-PLSR tech-
niques has been carried out by means of sensitivity 
analysis of leave-one-out cross validation method (ter 
Braak & Juggins, 1993; Barrows & Juggins, 2005). The 
indices we took into account were: the Coefficient of 
determination R2 and the Mean Square Error of Predic-
tion (MSEP) (with its square root, the RMSEP) (Wallach 
& Goffmet, 1989; Birks, 1995) and as multivariate coun-
terpart, the root of mean squared distances (RMSD) 
(e.g., Martín-Fernández et al., 2003). 

The MSD is a multivariate index of quality of the 
estimates of k environmental parameters defined as: 

where n is the number of modern samples,    represents 
the vector of k measured environmenal parameters, and 
     the corresponding vector of estimated values. This 
approach is equivalent to analyse the mean of the norm 

of the residual rows (difference between measured and 
estimated parameters). The best result of RMSD is ob-
tained when RMSD=0, i.e, all the estimates are equal to 
the measured values. The multivariate approach may be 
applied when different paleoclimatic parameters are 
estimated (i.e. temperature, seasonal or annual precipi-
tation, potential evapo-transpiration, as done in pollen 
analysis). For the evaluation of the results obtained from 
grouped assemblages, we considered both a “pooled” 
R2, i.e. for 2 groups, R2=(SSR gr1+SSR gr2)/(SST 
gr1+SST gr2), together with the squared correlation 
coefficient r2 obtained by comparing the overall (both 
groups) measured and fitted SST values. Squared cor-
relation coefficients are reported in the supplementary 
materials. 
 
2.5. Application on fossil assemblages 

Probably the most important difficulty of any proxy-
based reconstruction is represented by the no-analogue 
problem, occurring when the palaeoenvironmental con-
ditions represented in the fossil assemblages do not 
have a correspondence in modern environments 
(Hutson, 1977). It can be considered that the application 
of regression methods to no-analogue samples, may be 
regarded as extrapolation rather than interpolation 
(Conn et al., 2015). In Di Donato et al. (2018), we adopt-
ed atypicality index (e.g., Aitchison, 1986), both stand-
ard and robust, and Local Outlier Factor (LOF) (Breunig 
et al., 2000) of assemblages as tools to detect no-
analogue conditions. Details on the computation of atyp-
icality index and robust methods to outlier detection 
(Peña & Prieto, 2001) for CoDa sets (Filzmoser & Hron, 
2008) are reported in Di Donato et al., 2018.  
 
3. TESTING THE METHOD 
 
3.1. Results 

The number of components from which compute 
the PLS was determined by considering the percent 
variance explained for the response variables and the 
MSE of response variable as functions of the number of 
PLS components (Fig. 3) and, for CoDa-PCR, the 
amount of total variance of regressor variables account-
ed by the principal components (Fig. 4). For both the 
tested datasets, 4 components seem to provide an ade-
quate CoDa-PLSR model. For CoDa-PCR, we adopted 
a 6 components model. As regards the two-groups ap-
proach, the subcomposition obtained for high latitude 
assemblages is made of only 6 parts. In the other group, 
for both CoDa-PLSR and CoDa-PCR, we considered a 
full-components model. 

We tested both annual SST and seasonal SST. 
The relationships between measured and estimated 
seasonal SST obtained with PCR and PLSR under dif-
ferent conditions are reported in the supplementary ma-
terials. In general, the 15 taxa and 19 taxa datasets 
provided quite similar results. It can be noted, that, for 
both CoDa-PCR and CoDa-PLSR, higher squared corre-
lation coefficients and lower RMSEP are obtained with a 
two-groups analysis. The highest r2 of 0.9718, with a 
RMSE of 1.33°C was obtained for mean annual SST 
with CoDa-PLSR. Figure 5 shows the relationship be-
tween measured and cross-validation-estimated SST for 
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a 1 group and for 2-groups analysis. It can be noted 
that, the 1-group model, a “plateau” for low SST, which 
can be also observed, in the Imbrie & Kipp (1971) meth-
od and CoDa-MAT validation, and which becomes much 
less pronounced, with a 2-groups modelling. 

For a single group analysis, PLSR performs better 
than PCR. However, for a 2 groups analysis, PLSR and 
PCR provided quite similar results. Robust version of 
CoDa-PLSR and CoDa-PCR did not improve the fitting 
with respect to standard CoDa-PLSR and CoDa-PCR. 
In comparison with the CoDa-MAT method, CoDa-PLSR 
and CoDa-PCR provides slightly lower R2 and higher 
RMSEP. A slightly better performance of MAT with re-
spect to a regression method (i.e. the Imbrie & Kipp 
transfer function) was also found by Ortiz & Mix (1997) 
by working on raw percentage data. As far as the com-
parison with raw data regression-based methods, on our 
dataset, the Imbrie & Kipp (1971) Q-mode regression 
method yields, with 5 components an R2=0.8956 and an 
RMSE=2.47°C. The Weighted Averaged Partial Least 

 
 

35 

 

Fig. 3 - The figure shows for the 15 taxonomic groups dataset plots (from which 14 predictors represented by ilr-variables are obtained) of 
a) the percent variance explained for a single response variable (annual SST) and b) the MSE of response variable as functions of the 
number of PLS components.   

Fig. 4 - Plot of cumulative percentage accounted (blue line) and 
variance contribution of each component (red line) in CoDa-
PCR.    

Fig.5 - Plots of observed versus estimated SST (annual and seasonal) obtained with a 1-group (left) and a 2-groups CoDa-PLSR model-
ling. 
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Squares Method (WAPLS) (ter Braak & Juggins, 1993) 
yields an R2=0.9544 and an RMSE=1.70°C.    
 
 3.2. Application examples 

As an application example, the CoDa-MAT method 
was applied to planktonic foraminifera records which 
were also considered to evaluate the performing of Co-
Da-MAT. The first one is a literature dataset, consisting 
of the record of planktonic foraminifera assemblages of 
the core MD95-2040 (de Abreu et al., 2003; Voelker & 
de Abreu, 2011), recovered in the Atlantic Ocean off the 
Iberian margin, the second is that of GNS84-C106 core 
recovered in the Tyrrhenian sea (Buccheri et al, 2002; 
Di Donato et al., 2008; 2009). For the Mediterranean 
Sea, we also considered the planktonic foraminiferal 
record of the Core TEA-C6 (Di Donato et al., 2019), 
from which an estimate of past SST for the last 15 ka, 
was obtained with the CoDa-MAT method. All datasets 
are obtained from >150 μm size fractions. The location 
of the cores is shown in Figure 6.  

A discussion of the possible drawback represented 
by the excessive loss of small sized species in the >150 
μm size fraction can be found in Di Donato et al. (2015). 
It can be noted that >150 micron and >106 μm datasets, 
if analysed with CoDa methods, provide the same co-
variance structure. This suggests that regression-based 
methods based on CoDa, may be quite robust with re-
spect to treatment changes such as the analysed size 
fraction. 
 
3.2.1. Atlantic Ocean 

The foraminiferal record of MD95-2040 core co-
vers the last 210 ka (de Abreu et al., 2003; Voelker, & 
de Abreu, 2011). SST for this interval were formerly 
reconstructed (de Abreu et al., 2003) from planktonic 
foraminifera with SIMMAX28 method (Pflaumann et al., 
1996). The dataset consists of 732 assemblages. As 
regards the atypicality of assemblages, in relation to the 
99.5 percentile only 4% of the samples have Mahalano-
bis distances are above the xi-square critical value of 
31.32 (see Figure 6 in Di Donato et al., 2018). As for the 
LOF it can be noted that glacial assemblages are char-
acterised by higher values of up to 2, while most inter-
glacial assemblages have LOF values not exceeding 
1.5. On the basis of LDA computed on ilr-coordinates, 
98 assemblages were classified into the high latitude 
assemblage group, and 634 assemblages into the low 
to middle latitude assemblage group. The output of the 
LDA with the indication of the group to which each as-
semblage was assigned with the posterior probabilities 
is provided in the supplementary materials. 

A comparison between the values reconstructed 
for summer and winter SST by means of SIMMAX28 (de 
Abreu et al., 2003), CoDa-MAT, CoDa-PLSR and CoDa-

PCR is shown in Figure 7. The stronger coherence of 
CoDa-MAT reconstruction with Alkenones and the sta-
ble isotope record with respect to SIMMAX28 has been 
already highlighted in Di Donato et al. (2018). Here we 
note that CoDa-PLSR and CoDa-PCR reconstruction 
are largely overlapping and show a same general trend 
if compared with CoDa-MAT. Several SST minima, 
which correspond to Heinrich events, are also recorded 
by CoDa-PLSR and CoDa-PCR with slightly less-deep 
minima in comparison with CoDa-MAT but more marked 
in comparison with alkenones record. CoDa-MAT and 
Regression-based methods also provide different SST 
reconstructions for the MIS5: the former provides higher 
SST estimates, while the latter highlight a decreasing 
trend during the MIS5 which does not appear in the Co-
Da-MAT reconstruction. The SST reconstructed with the 
15 taxa and the 19 taxa datasets, are quite similar, be-
ing characterised by a r=0.9865 (r= 0.9868) and by a 
root mean squared difference of 0.70°C (0.48°C) for 
summer (winter) SST. The multivariate RMSD between 
15 taxa and the 19 taxa reconstructed SST is 0.7177.  
 
3.2.2. Mediterranean Sea  

The Core GNS84-C106 recovered in the Gulf of 
Salerno (Tyrrhenian sea - Western Mediterranean) co-
vers the last 34 ka (Di Donato et al., 2009). This dataset 
is represented by 228 planktonic foraminiferal assem-
blages determined on the >150-micron size fraction. The 
quantitative reconstructions of past climatic conditions 
for the Mediterranean basin face several problems relat-
ed to the peculiar hydrological asset of this semi-
enclosed basin. Reconstructions became even more 
problematic for glacial intervals (Sbaffi et al., 2001, 
among others). As regards the LDA, the whole Core 
GNS84-C106 dataset was classified into the low to mid-
dle latitude group (see supplementary material). Howev-
er, as shown in Figure 8, a significant atypicality index 
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Fig. 6 - Location of cores considered in this paper. 

------ --->>>>> 
 
Fig. 7 - Reconstruction of seasonal SST for the last 210 ka off the Iberian margin from core MD95-2040 and comparison between SIM-
MAX28 (de Abreu et al., 2003, Voelker & de Abreu, 2011), CoDa-MAT, CoDa-PLSR and CoDa-PCR reconstructed SSTs. a) summer and 
b) winter SIMMAX28 reconstruction. c) summer and d) winter SST CoDa-based reconstructions. Grey lines indicate the standard devia-
tion of CoDa-MAT estimates e) Alkenone based SST reconstruction (Pailler & Bard, 2002). f) Globigerina bulloides stable isotope record 
and Marine Isotopic Stages (MIS) (Abreu et al., 2003; Schönfeld et al., 2003): grey-shaded dots: distance of fossil assemblages from 
each of the 6 closest modern analogues. Full line: mean values. g) LOF values (see Di Donato et al., 2018) h) atypicality index: 0: not 
significant; 1: significant. 
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was found for several planktonic foraminiferal assem-
blages of the Core GNS84-C106. As in the previous 
case study, CoDa-PLSR and CoDa-PCR provide quite 
similar results. For this Core, however, within the same 
general trend, regression-based methods and CoDa-
MAT provide quite different results. In this case study, 
raw percentage data MAT and, to a lesser degree, Co-
Da-MAT provided summer SST which seem quite high 
for the GI-1 interval and for time intervals of the Last 
Glacial Period centred around 24 and 20 ka BP. This 
problem is likely partly related to the adopted size frac-
tion (Di Donato et al., 2015). Regression based methods 
seem to provide a more coherent SST trend, i.e. Last 
Glacial Period lower than Holocene, and intermediate 
SST values during the Late Glacial. However, it can be 
noted that CoDa-PLSR and CoDa-PCR provide higher 
SST estimates for the colder intervals of the glacial peri-
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od. As an example, between 15 and 17 ka BP, CoDa-
MAT reconstruct winter SST of even 8.5 °C, while CoDa
-PLSR and CoDa-PCR indicate lower values of about 
10°C. For this core, we do not have, at present alterna-
tive proxy-based reconstructions. However, the regres-
sion based reconstructed SSTs seem more coherent 
with alkenone-based reconstructions obtained for the 
Southern Tyrrhenian Sea (Sbaffi et al, 2001), which 
provided higher SST values if compared with the MAT 
reconstructions. During the Holocene, CoDa-MAT, Co-
Da-PLSR and CoDa-PCR indicate an SST rise around 5 
ka BP. However, CoDa-PLSR and CoDa-PCR indicate 
warmer than present SST for an interval centred around 
4 to 3 ka BP, which coincides with a peak in the warm 
species Globigerinoides sacculifer widely recognized in 
the Mediterranean Sea (Capotondi et al., 1999; among 
others) and a decreasing trend afterwards. This trend is 

Fig. 8 - Reconstruction of seasonal SST obtained from GNS84-C106 Core. a) summer b) winter. The grey error bars indicate the standard 
deviation of each reconstructed value. c) LOF values e) atypicality index: 0: not significant; 1: significant. The INTIMATE Greenland event 
stratigraphy is reported from Rasmussen et al. (2014). 
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quite similar to the alkenones record of the Core BS79-
38 recovered in the Southern Tyrrhenian Sea (Sbaffi et 
al, 2001). However, alkenones provided higher than 
present SST values for the early to middle Holocene 
which are not confirmed by planktonic foraminifera.  
 
4. CONCLUSIVE REMARKS 
 

Following out previous paper focused on CoDa 
and modern analogue technique, in this article we de-
veloped a transfer function based on multivariate re-
gression methods in a fashion coherent with a CoDa 
approach. The main advantages of CoDa-MAT, being a 
non-parametric method (Guiot & De Vernal, 2011a;b), is 
its flexibility and the fact that the quality of each single 
reconstruction can be evaluated by means local outlier 
factor and mean distances. By contrast, once the model 
has been built, we must accept the reconstructed SST 
“as they are”. Likely, CoDa-PLSR might be more sensi-
tive than CoDa-MAT to random effects, since limited 
random effects should not strongly influence the choice 
of the best modern analogs for a fossil assemblage. 
However, CoDa-PLSR and CoDa-PCR, may be more 
robust with respect to treatment changes such as the 
size fraction adopted for the analysis, which represent a 
critical point in the analysis of foraminifera assemblag-
es. Whatever the approach, it is important to evaluate 
the atypicality of the fossil assemblages in comparison 
with modern ones. In this article we provided application 
examples for an Atlantic Ocean and a Mediterranean 
Sea core. CoDa-MAT and regression-based methods 
seem to provide quite coherent reconstructions for the 
Atlantic Ocean, while for the Mediterranean Sea, the 
obtained reconstructions are, as expected, more prob-
lematic. Together with CoDa-MAT, CoDa-PLSR and 
CoDa-PCR provide the basis for more extensive recon-
structions which will be the focus of future investiga-
tions.  
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